Ads
related to: data mining techniques in health care services
Search results
Results From The WOW.Com Content Network
The use of Clinical Data Repositories could provide a wealth of knowledge about patients, their medical conditions, and their outcome. The database could serve as a way to study the relationship and potential patterns between disease progression and management. The term "Medical Data Mining" has been coined for this method of research.
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
Spatial data mining is the application of data mining methods to spatial data. The end objective of spatial data mining is to find patterns in data with respect to geography. So far, data mining and Geographic Information Systems (GIS) have existed as two separate technologies, each with its own methods, traditions, and approaches to ...
Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.
Health care analytics is the health care analysis activities that can be undertaken as a result of data collected from four areas within healthcare: (1) claims and cost data, (2) pharmaceutical and research and development (R&D) data, (3) clinical data (such as collected from electronic medical records (EHRs)), and (4) patient behaviors and preferences data (e.g. patient satisfaction or retail ...
The strategies in this field have been applied to the biomedical literature available through services such as PubMed. In recent years, the scientific literature has shifted to electronic publishing but the volume of information available can be overwhelming. This revolution of publishing has caused a high demand for text mining techniques.
Healthcare quality and safety require that the right information be available at the right time to support patient care and health system management decisions. Gaining consensus on essential data content and documentation standards is a necessary prerequisite for high-quality data in the interconnected healthcare system of the future.
Biomedical data science is a multidisciplinary field which leverages large volumes of data to promote biomedical innovation and discovery. Biomedical data science draws from various fields including Biostatistics , Biomedical informatics , and machine learning , with the goal of understanding biological and medical data.