Search results
Results From The WOW.Com Content Network
Sea slugs respire through a gill (or ctenidium). Aquatic respiration is the process whereby an aquatic organism exchanges respiratory gases with water, obtaining oxygen from oxygen dissolved in water and excreting carbon dioxide and some other metabolic waste products into the water.
Natural decomposers present in the water begin decomposing the dead algae, consuming dissolved oxygen present in the water during the process. This can result in a sharp decrease in available dissolved oxygen for other aquatic life. Without sufficient dissolved oxygen in the water, animals and plants may die off in large numbers.
This constant cycle of carbon through the system is not the only element being transferred. In animal and plant respiration these living beings take in glucose and oxygen while emitting energy, carbon dioxide, and water as waste. These constant cycles provide for a influx of oxygen into the system and carbon out of the system.
Decreased levels of dissolved oxygen (DO) is a major contributor to poor water quality. Not only do fish and most other aquatic animals need oxygen, aerobic bacteria help decompose organic matter. When oxygen concentrations become low, anoxic conditions may develop which can decrease the ability of the water body to support life.
Algal blooms limit the sunlight available to bottom-dwelling organisms and cause wide swings in the amount of dissolved oxygen in the water. Oxygen is required by all aerobically respiring plants and animals and it is replenished in daylight by photosynthesizing plants and algae. Under eutrophic conditions, dissolved oxygen greatly increases ...
The amount of dissolved oxygen in a water body is frequently the key substance in determining the extent and kinds of organic life in the water body. Fish need dissolved oxygen to survive, although their tolerance to low oxygen varies among species; in extreme cases of low oxygen, some fish even resort to air gulping. [25] Plants often have to ...
The oxidation of water is catalyzed in photosystem II by a redox-active structure that contains four manganese ions and a calcium ion; this oxygen-evolving complex binds two water molecules and contains the four oxidizing equivalents that are used to drive the water-oxidizing reaction (Kok's S-state diagrams).
The amount of oxygen that can be dissolved in water depends on the atmospheric pressure, the water temperature and whether the water is salty. [7] For example, at 20 °C (68 °F) and one atmosphere of pressure, a maximum of 8 mg/L of oxygen can dissolve in sea water (35 mg/L salinity ) while a maximum of 9 mg/L of oxygen can dissolve in fresh ...