Search results
Results From The WOW.Com Content Network
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
Measurement errors can be divided into two components: random and systematic. [2] Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty.
A calibration curve plot showing limit of detection (LOD), limit of quantification (LOQ), dynamic range, and limit of linearity (LOL).. In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. [1]
The formal definition of calibration by the International Bureau of Weights and Measures (BIPM) is the following: "Operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties (of the calibrated instrument or ...
Measurement uncertainty is a value associated with a measurement which expresses the spread of possible values associated with the measurand—a quantitative expression of the doubt existing in the measurement. [35] There are two components to the uncertainty of a measurement: the width of the uncertainty interval and the confidence level. [36]
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
Fornasini, Paolo (2008), The uncertainty in physical measurements: an introduction to data analysis in the physics laboratory, Springer, p. 161, ISBN 978-0-387-78649-0 Meyer, Stuart L. (1975), Data Analysis for Scientists and Engineers , Wiley, ISBN 978-0-471-59995-1
In industrial instrumentation, accuracy is the measurement tolerance, or transmission of the instrument and defines the limits of the errors made when the instrument is used in normal operating conditions. [7] Ideally a measurement device is both accurate and precise, with measurements all close to and tightly clustered around the true value.