When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Theta function - Wikipedia

    en.wikipedia.org/wiki/Theta_function

    There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has a positive ...

  3. Riemann–Siegel theta function - Wikipedia

    en.wikipedia.org/wiki/Riemann–Siegel_theta...

    In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as = ⁡ ((+)) ⁡for real values of t.Here the argument is chosen in such a way that a continuous function is obtained and () = holds, i.e., in the same way that the principal branch of the log-gamma function is defined.

  4. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function and the Fourier coefficients of the J-invariant (OEIS: A000521): ∑ n = − 1 ∞ j n q n = 256 ( 1 − z + z 2 ) 3 z 2 ( 1 − z ) 2 , {\displaystyle \sum _{n=-1}^{\infty }\mathrm {j} _{n}q^{n}=256{\dfrac {(1-z+z^{2})^{3}}{z ...

  5. Neville theta functions - Wikipedia

    en.wikipedia.org/wiki/Neville_theta_functions

    The Neville theta functions are related to the Jacobi elliptic functions. If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then

  6. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The equation relates values of the Riemann zeta function at the points s and 1 − s, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that ζ(s) has a simple zero at each even negative integer s = −2n, known as the trivial zeros of ζ(s).

  7. Ramanujan theta function - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_theta_function

    In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa ...

  8. Tau function (integrable systems) - Wikipedia

    en.wikipedia.org/wiki/Tau_function_(integrable...

    Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains.They were originally introduced by Ryogo Hirota [1] in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

  9. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    It may be that the function f can be expressed as a quotient of two functions, () = (), where g and h are holomorphic functions in a neighbourhood of c, with h(c) = 0 and h'(c) ≠ 0. In such a case, L'Hôpital's rule can be used to simplify the above formula to:

  1. Related searches infty theta function formula calculator example with solution form

    theta function zinfty theta function formula calculator example with solution form 1
    theta nullwert