Search results
Results From The WOW.Com Content Network
On May 6, 2024, IBM released the source code of four variations of Granite Code Models under Apache 2, an open source permissive license that allows completely free use, modification and sharing of the software, and put them on Hugging Face for public use.
The Hugging Face Hub is a platform (centralized web service) for hosting: [19] Git-based code repositories, including discussions and pull requests for projects. models, also with Git-based version control; datasets, mainly in text, images, and audio;
Watsonx.ai is a platform that allows AI developers to leverage a wide range of LLMs under IBM's own Granite series and others such as Facebook's LLaMA-2, free and open-source model Mistral and many others present in Hugging Face community for a diverse set of AI development tasks.
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]
The cloud computing arm of Alphabet Inc said on Thursday it had formed a partnership with startup Hugging Face to ease artificial intelligence (AI) software development in the company's Google Cloud.
LangChain is a software framework that helps facilitate the integration of large language models (LLMs) into applications. As a language model integration framework, LangChain's use-cases largely overlap with those of language models in general, including document analysis and summarization, chatbots, and code analysis.
Retrieval Augmented Generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.
This is achieved by prompting the text encoder with class names and selecting the class whose embedding is closest to the image embedding. For example, to classify an image, they compared the embedding of the image with the embedding of the text "A photo of a {class}.", and the {class} that results in the highest dot product is outputted.