Ads
related to: what does ir spectroscopy do
Search results
Results From The WOW.Com Content Network
Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms.
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
[1] [2] In physical and analytical chemistry, infrared spectroscopy (IR spectroscopy) is a technique used to identify chemical compounds based on the way infrared radiation is absorbed by the compound. The absorptions in this range do not apply only to bonds in organic molecules.
Infrared vibrational spectroscopy (see also near-infrared spectroscopy) is a technique that can be used to identify molecules by analysis of their constituent bonds. Each chemical bond in a molecule vibrates at a frequency characteristic of that bond.
Near-IR absorption spectrum of dichloromethane showing complicated overlapping overtones of mid IR absorption features. Near-infrared spectroscopy (NIRS) is a spectroscopic method that uses the near-infrared region of the electromagnetic spectrum (from 780 nm to 2500 nm). [1]
AFM-IR enables nanoscale infrared spectroscopy, [52] i.e. the ability to obtain infrared absorption spectra from nanoscale regions of a sample. Chemical compositional mapping AFM-IR can also be used to perform chemical imaging or compositional mapping with spatial resolution down to ~10-20 nm, [ 18 ] limited only by the radius of the AFM tip.