Search results
Results From The WOW.Com Content Network
Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle . [ 1 ] It can also be defined as the change in the state of water vapor to liquid water when in contact with a liquid or solid surface or cloud condensation nuclei within ...
[a] While processes in isolated systems are never reversible, [3] cyclical processes can be reversible or irreversible. [4] Reversible processes are hypothetical or idealized but central to the second law of thermodynamics. [3] Melting or freezing of ice in water is an example of a realistic process that is nearly reversible.
The Carnot cycle, which has a quantum equivalent, [11] is reversible so the four processes that comprise it, two isothermal and two isentropic, can also be reversed. When a Carnot cycle runs in reverse, it is called a reverse Carnot cycle. A refrigerator or heat pump that acts according to the reversed Carnot cycle is called a Carnot ...
The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink.
The convective condensation level (CCL) results when strong surface heating causes buoyant lifting of surface air and subsequent mixing of the planetary boundary layer, so that the layer near the surface ends up with a dry adiabatic lapse rate. As the mixing becomes deeper, it will get to the point where the LCL of an air parcel starting at the ...
For reversible processes, an isentropic transformation is carried out by thermally "insulating" the system from its surroundings. Temperature is the thermodynamic conjugate variable to entropy, thus the conjugate process would be an isothermal process , in which the system is thermally "connected" to a constant-temperature heat bath.
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
The reversible reaction N 2 O 4 (g) ⇌ 2NO 2 (g) is endothermic, so the equilibrium position can be shifted by changing the temperature. When heat is added and the temperature increases, the reaction shifts to the right and the flask turns reddish brown due to an increase in NO 2. This demonstrates Le Chatelier's principle: the equilibrium ...