When.com Web Search

  1. Ads

    related to: 8.314 l kpa mol k to 1 m3 water meter

Search results

  1. Results From The WOW.Com Content Network
  2. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    R ∗ = 8.314 32 × 10 3 N⋅m⋅kmol −1K1 = 8.314 32 J⋅K1mol1. Note the use of the kilomole, with the resulting factor of 1000 in the constant. The USSA1976 acknowledges that this value is not consistent with the cited values for the Avogadro constant and the Boltzmann constant. [ 13 ]

  3. Fugacity capacity - Wikipedia

    en.wikipedia.org/wiki/Fugacity_capacity

    Where: R is the Ideal gas constant (8.314 Pa·m 3 /mol·K); T is the absolute temperature (K); H is the Henry's law constant for the target chemical (Pa/m 3 mol); K ow is the octanol-water partition coefficient for the target chemical (dimensionless ratio); P s is the vapor pressure of the target chemical (Pa); and v is the molar volume of the ...

  4. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K1mol1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  5. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Macroscopically, the ideal gas law states that, for an ideal gas, the product of pressure p and volume V is proportional to the product of amount of substance n and absolute temperature T: =, where R is the molar gas constant (8.314 462 618 153 24 J⋅K1mol1). [4]

  6. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    p w is the partial pressure of gaseous water during condition 1 and 2, respectively; For example, calculating how much 1 liter of air (a) at 0 °C, 100 kPa, p w = 0 kPa (known as STPD, see below) would fill when breathed into the lungs where it is mixed with water vapor (l), where it quickly becomes 37 °C (99 °F), 100 kPa, p w = 6.2 kPa (BTPS):

  7. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    In SI units, p is measured in pascals, V is measured in cubic metres, n is measured in moles, and T in kelvins (the Kelvin scale is a shifted Celsius scale, where 0 K = −273.15 °C, the lowest possible temperature). R has for value 8.314 J/(mol·K) = 1.989 ≈ 2 cal/(mol·K), or 0.0821 L⋅atm/(molK).

  8. Water (data page) - Wikipedia

    en.wikipedia.org/wiki/Water_(data_page)

    a = 553.6 L 2 kPa/mol 2 ... λ – Heat conductivity in milliwatts per meter-kelvin; ... Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure ...

  9. Useful conversions and formulas for air dispersion modeling

    en.wikipedia.org/wiki/Useful_conversions_and...

    Meteorological data includes wind speeds which may be expressed as statute miles per hour, knots, or meters per second. Here are the conversion factors for those various expressions of wind speed: 1 m/s = 2.237 statute mile/h = 1.944 knots 1 knot = 1.151 statute mile/h = 0.514 m/s 1 statute mile/h = 0.869 knots = 0.447 m/s. Note:

  1. Related searches 8.314 l kpa mol k to 1 m3 water meter

    8.314 l kpa mol k to 1 m3 water meter conversion