Search results
Results From The WOW.Com Content Network
The example below assesses another double-heterozygote cross using RrYy x RrYy. As stated above, the phenotypic ratio is expected to be 9:3:3:1 if crossing unlinked genes from two double-heterozygotes. The genotypic ratio was obtained in the diagram below, this diagram will have more branches than if only analyzing for phenotypic ratio.
One way to visualize the similarity between two protein or nucleic acid sequences is to use a similarity matrix, known as a dot plot. These were introduced by Gibbs and McIntyre in 1970 [1] and are two-dimensional matrices that have the sequences of the proteins being compared along the vertical and horizontal axes.
A De Finetti diagram visualizing genotype frequencies as distances to triangle edges x (AA), y (Aa) and z (aa) in a ternary plot. The curved line are the Hardy–Weinberg equilibria. A Punnett square visualizing the genotype frequencies of a Hardy–Weinberg equilibrium as areas of a square. p (A) and q (a) are the allele frequencies.
Ab Initio gene prediction is an intrinsic method based on gene content and signal detection. Because of the inherent expense and difficulty in obtaining extrinsic evidence for many genes, it is also necessary to resort to ab initio gene finding, in which the genomic DNA sequence alone is systematically searched for certain tell-tale signs of protein-coding genes.
The allele frequency spectrum can be written as the vector = (,,,,), where is the number of observed sites with derived allele frequency .In this example, the observed allele frequency spectrum is (,,,,), due to four instances of a single observed derived allele at a particular SNP loci, two instances of two derived alleles, and so on.
If dioecious organisms are heterogametic and the gene locus is located on the X chromosome, it can be shown that if the allele frequencies are initially unequal in the two sexes [e.g., XX females and XY males, as in humans], f′(a) in the heterogametic sex 'chases' f(a) in the homogametic sex of the previous generation, until an equilibrium is ...
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
where A, T, G, and C represent the frequency of occurrence of the equivalent base in a particular sequence in a defined length. A window sliding strategy is used to calculate deviation from C through the genome. In these plots, a positive deviation from C corresponds to lagging strand and negative deviation from C corresponds to leading strand. [8]