When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dilation (metric space) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(metric_space)

    In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]

  3. Wheel theory - Wikipedia

    en.wikipedia.org/wiki/Wheel_theory

    Starting with the real numbers, the corresponding projective "line" is geometrically a circle, and then the extra point / gives the shape that is the source of the term "wheel". Or starting with the complex numbers instead, the corresponding projective "line" is a sphere (the Riemann sphere ), and then the extra point gives a 3-dimensional ...

  4. File:Boyle's Law Demonstrations.webm - Wikipedia

    en.wikipedia.org/wiki/File:Boyle's_Law...

    Boyle's_Law_Demonstrations.webm (WebM audio/video file, VP8/Vorbis, length 1 min 32 s, 640 × 480 pixels, 326 kbps overall, file size: 3.57 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.

  5. Bhāskara's wheel - Wikipedia

    en.wikipedia.org/wiki/Bhāskara's_wheel

    The wheel consisted of curved or tilted spokes partially filled with mercury. [1] Once in motion, the mercury would flow from one side of the spoke to another, thus forcing the wheel to continue motion, in constant dynamic equilibrium. Like all perpetual-motion machines, Bhaskara's wheel is a long-discredited mechanism.

  6. Mathematical morphology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_morphology

    Mathematical Morphology was developed in 1964 by the collaborative work of Georges Matheron and Jean Serra, at the École des Mines de Paris, France.Matheron supervised the PhD thesis of Serra, devoted to the quantification of mineral characteristics from thin cross sections, and this work resulted in a novel practical approach, as well as theoretical advancements in integral geometry and ...

  7. Dilation - Wikipedia

    en.wikipedia.org/wiki/Dilation

    Dilation (operator theory), a dilation of an operator on a Hilbert space; Dilation (morphology), an operation in mathematical morphology; Scaling (geometry), including: Homogeneous dilation , the scalar multiplication operator on a vector space or affine space; Inhomogeneous dilation, where scale factors may differ in different directions

  8. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point S called its center and a nonzero number k called its ratio, which sends point X to a point X ′ by the rule, [1]

  9. Dilation (morphology) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(morphology)

    Dilation (usually represented by ⊕) is one of the basic operations in mathematical morphology. Originally developed for binary images, it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.