Search results
Results From The WOW.Com Content Network
Idle is a state that a computer processor is in when it is not being used by any program. Every program or task that runs on a computer system occupies a certain amount of processing time on the CPU. If the CPU has completed all tasks it is idle. Modern processors use idle time to save power.
Its CPU time "usage" is a measure of how much CPU time is not being used by other threads. In Windows 2000 and later the threads in the System Idle Process are also used to implement CPU power saving. The exact power saving scheme depends on the operating system version and on the hardware and firmware capabilities of the system in question ...
CPU time (or process time) is the amount of time that a central processing unit (CPU) was used for processing instructions of a computer program or operating system. CPU time is measured in clock ticks or seconds. Sometimes it is useful to convert CPU time into a percentage of the CPU capacity, giving the CPU usage.
For example, assume that we are given a serial task which is split into four consecutive parts, whose percentages of execution time are p1 = 0.11, p2 = 0.18, p3 = 0.23, and p4 = 0.48 respectively. Then we are told that the 1st part is not sped up, so s 1 = 1 , while the 2nd part is sped up 5 times, so s 2 = 5 , the 3rd part is sped up 20 times ...
The concept of CPU-bounding was developed during early computers, when data paths between computer components were simpler, and it was possible to visually see one component working while another was idle. Example components were CPU, tape drives, hard disks, card-readers, and printers.
A polynomial-time approximation scheme (PTAS) for the case when the number of processors is constant, denoted by | |, was presented by Amoura et al. [13] and Jansen et al. [14] Later, Jansen and Thöle [2] found a PTAS for the case where the number of processors is polynomially bounded in the number of jobs. In this algorithm, the number of ...
For example, an IBM PC with an Intel 80486 CPU running at 50 MHz will be about twice as fast (internally only) as one with the same CPU and memory running at 25 MHz, while the same will not be true for MIPS R4000 running at the same clock rate as the two are different processors that implement different architectures and microarchitectures ...
In simpler CPUs, the instruction cycle is executed sequentially, each instruction being processed before the next one is started. In most modern CPUs, the instruction cycles are instead executed concurrently, and often in parallel, through an instruction pipeline: the next instruction starts being processed before the previous instruction has finished, which is possible because the cycle is ...