Search results
Results From The WOW.Com Content Network
Venn diagram of . In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction.The logical connective of this operator is typically represented as [1] or & or (prefix) or or [2] in which is the most modern and widely used.
modal operator for “it is possible that”, (in most modal logics it is defined as “¬ ¬”, “it is not necessarily not”). ∃ x P ( x ) {\displaystyle \Diamond \exists xP(x)} says “it is possible that something has property P {\displaystyle P} ”
Venn diagram of . Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional.
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of and is sometimes expressed as , ::, , or , depending on the notation being used.
The logical disjunction operator thus usually constitutes a sequence point. In a parallel (concurrent) language, it is possible to short-circuit both sides: they are evaluated in parallel, and if one terminates with value true, the other is interrupted. This operator is thus called the parallel or.
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. Connectives can be used to connect logical formulas.
The operator precedence is a number (from high to low or vice versa) that defines which operator takes an operand that is surrounded by two operators of different precedence (or priority). Multiplication normally has higher precedence than addition, [ 1 ] for example, so 3+4×5 = 3+(4×5) ≠ (3+4)×5.
However, many logics replace material implication with other operators such as the strict conditional and the variably strict conditional. Due to the paradoxes of material implication and related problems, material implication is not generally considered a viable analysis of conditional sentences in natural language.