Search results
Results From The WOW.Com Content Network
This special line is the radical line of the two circles. Intersection of two circles with centers on the x-axis, their radical line is dark red. Special case = = = : In this case the origin is the center of the first circle and the second center lies on the x-axis (s. diagram).
The distances between the centers of the nearer and farther circles, O 2 and O 1 and the point where the two outer tangents of the two circles intersect (homothetic center), S respectively can be found out using similarity as follows: Here, r can be r 1 or r 2 depending upon the need to find distances from the centers of the nearer or farther ...
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
If the circle centers do not lie on a line, the radical axes intersect in a common point , the radical center of the three circles. The orthogonal circle centered around of two circles is orthogonal to the third circle, too (radical circle).
Figure 5: Every circle which is tangent to two given circles touches them at a pair of antihomologous points. Let our two circles have centers O 1, O 2 (Figure 5). E is their external homothetic center. We construct an arbitrary ray from E which intersects the two circles in P, Q, P' and Q'. Extend O 1 Q, O 2 P' until they intersect in T 1.
In general, the same inversion transforms the given line L and given circle C into two new circles, c 1 and c 2. Thus, the problem becomes that of finding a solution line tangent to the two inverted circles, which was solved above. There are four such lines, and re-inversion transforms them into the four solution circles of the Apollonius problem.
For any two circles in a plane, an external tangent is a line that is tangent to both circles but does not pass between them. There are two such external tangent lines for any two circles. Each such pair has a unique intersection point in the extended Euclidean plane. Monge's theorem states that the three such points given by the three pairs of ...
In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...