Search results
Results From The WOW.Com Content Network
where I n is the identity matrix of size n. An orthogonal matrix A is necessarily invertible (with inverse A −1 = A T), unitary (A −1 = A*), and normal (A*A = AA*). The determinant of any orthogonal matrix is either +1 or −1. A special orthogonal matrix is an orthogonal matrix with determinant +1.
The column space of a matrix is the image or range of the corresponding matrix transformation. Let be a field. The column space of an m × n matrix with components from is a linear subspace of the m-space. The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1]
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
While the terms allude to the rows and columns of a two-dimensional array, i.e. a matrix, the orders can be generalized to arrays of any dimension by noting that the terms row-major and column-major are equivalent to lexicographic and colexicographic orders, respectively. It is also worth noting that matrices, being commonly represented as ...
If B is another linear map from the preceding vector space of dimension m, into a vector space of dimension p, it is represented by a matrix . A straightforward computation shows that the matrix of the composite map B ∘ A {\displaystyle B\circ A} is the matrix product B A . {\displaystyle \mathbf {BA} .}
The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, = for matrices A, B, and C of dimensions k×l, l×m, and m×n.
For this purpose, given an m × n matrix A, we construct first the row augmented matrix [], where I is the n × n identity matrix. Computing its column echelon form by Gaussian elimination (or any other suitable method), we get a matrix [ B C ] . {\displaystyle {\begin{bmatrix}B\\\hline C\end{bmatrix}}.}