When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/.../Convergence_of_random_variables

    The definition of convergence in distribution may be extended from random vectors to more general random elements in arbitrary metric spaces, and even to the “random variables” which are not measurable — a situation which occurs for example in the study of empirical processes. This is the “weak convergence of laws without laws being ...

  3. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    This article is supplemental for “Convergence of random variables” and provides proofs for selected results. Several results will be established using the portmanteau lemma: A sequence {X n} converges in distribution to X if and only if any of the following conditions are met:

  4. Uniform convergence in probability - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence_in...

    Uniform convergence in probability is a form of convergence in probability in statistical asymptotic theory and probability theory. It means that, under certain conditions, the empirical frequencies of all events in a certain event-family converge to their theoretical probabilities .

  5. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    A sequence of random variables ,, …, converges weakly to the random variable if their respective CDF converges,, … converges to the CDF of , wherever is continuous. Weak convergence is also called convergence in distribution .

  6. Slutsky's theorem - Wikipedia

    en.wikipedia.org/wiki/Slutsky's_theorem

    In probability theory, Slutsky's theorem extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables. [1] The theorem was named after Eugen Slutsky. [2] Slutsky's theorem is also attributed to Harald Cramér. [3]

  7. Glivenko–Cantelli theorem - Wikipedia

    en.wikipedia.org/wiki/Glivenko–Cantelli_theorem

    In the theory of probability, the Glivenko–Cantelli theorem (sometimes referred to as the Fundamental Theorem of Statistics), named after Valery Ivanovich Glivenko and Francesco Paolo Cantelli, describes the asymptotic behaviour of the empirical distribution function as the number of independent and identically distributed observations grows. [1]

  8. Continuous mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Continuous_mapping_theorem

    In probability theory, the continuous mapping theorem states that continuous functions preserve limits even if their arguments are sequences of random variables. A continuous function, in Heine's definition, is such a function that maps convergent sequences into convergent sequences: if x n → x then g(x n) → g(x).

  9. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    Let in the theorem denote a random variable that takes the values / and / with equal probabilities. With = the summands of the first two series are identically zero and var(Y n)=. The conditions of the theorem are then satisfied, so it follows that the harmonic series with random signs converges almost surely.