Ads
related to: find the estimated quotient rule definition calculus examples geometrystudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
The chain rule can be used to find whether they are getting closer or further apart. For example, one can consider the kinematics problem where one vehicle is heading West toward an intersection at 80 miles per hour while another is heading North away from the intersection at 60 miles per hour.
An example of the use of discrete calculus in mechanics is Newton's second law of motion: historically stated it expressly uses the term "change of motion" which implies the difference quotient saying The change of momentum of a body is equal to the resultant force acting on the body and is in the same direction.
In mathematics, geometric calculus extends geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to reproduce other mathematical theories including vector calculus , differential geometry , and differential forms .
The series can be compared to an integral to establish convergence or divergence. Let : [,) + be a non-negative and monotonically decreasing function such that () =.If = <, then the series converges.
Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]
Calculus is also used to find approximate solutions to equations; in practice, it is the standard way to solve differential equations and do root finding in most applications. Examples are methods such as Newton's method, fixed point iteration, and linear approximation.
Leibniz's concept of infinitesimals, long considered to be too imprecise to be used as a foundation of calculus, was eventually replaced by rigorous concepts developed by Weierstrass and others in the 19th century. Consequently, Leibniz's quotient notation was re-interpreted to stand for the limit of the modern definition.