When.com Web Search

  1. Ads

    related to: elasticity sample problems physics equation solver calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Stress functions - Wikipedia

    en.wikipedia.org/wiki/Stress_functions

    The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami-Michell compatibility equations. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions: [4]

  3. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.

  4. Clapeyron's theorem - Wikipedia

    en.wikipedia.org/wiki/Clapeyron's_theorem

    In the linear theory of elasticity Clapeyron's theorem states that the potential energy of deformation of a body, which is in equilibrium under a given load, is equal to half the work done by the external forces computed assuming these forces had remained constant from the initial state to the final state.

  5. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after ...

  6. Michell solution - Wikipedia

    en.wikipedia.org/wiki/Michell_solution

    In continuum mechanics, the Michell solution is a general solution to the elasticity equations in polar coordinates (,) developed by John Henry Michell in 1899. [1] The solution is such that the stress components are in the form of a Fourier series in θ {\displaystyle \theta } .

  7. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [ 1 ] [ 2 ] Other names are elastic modulus tensor and stiffness tensor . Common symbols include C {\displaystyle \mathbf {C} } and Y {\displaystyle \mathbf {Y} } .

  8. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    A starting point for solving contact problems is to understand the effect of a "point-load" applied to an isotropic, homogeneous, and linear elastic half-plane, shown in the figure to the right. The problem may be either plane stress or plane strain. This is a boundary value problem of linear elasticity subject to the traction boundary conditions:

  9. Biharmonic equation - Wikipedia

    en.wikipedia.org/wiki/Biharmonic_equation

    In mathematics, the biharmonic equation is a fourth-order partial differential equation which arises in areas of continuum mechanics, including linear elasticity theory and the solution of Stokes flows. Specifically, it is used in the modeling of thin structures that react elastically to external forces.