When.com Web Search

  1. Ads

    related to: understanding resistors and ohms in parallel

Search results

  1. Results From The WOW.Com Content Network
  2. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    Parallel resistance is illustrated by the circulatory system. Each organ is supplied by an artery that branches off the aorta. The total resistance of this parallel arrangement is expressed by the following equation: 1/R total = 1/R a + 1/R b + ... + 1/R n. R a, R b, and R n are the resistances of the renal, hepatic, and other arteries ...

  3. Resistor - Wikipedia

    en.wikipedia.org/wiki/Resistor

    For example, a 10 ohm resistor connected in parallel with a 5 ohm resistor and a 15 ohm resistor produces ⁠ 1 / 1/10 + 1/5 + 1/15 ⁠ ohms of resistance, or ⁠ 30 / 11 ⁠ = 2.727 ohms. A resistor network that is a combination of parallel and series connections can be broken up into smaller parts that are either one or the other.

  4. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    The two resistors follow Ohm's law: The plot is a straight line through the origin. The other two devices do not follow Ohm's law. There are, however, components of electrical circuits which do not obey Ohm's law; that is, their relationship between current and voltage (their I – V curve ) is nonlinear (or non-ohmic).

  5. Current divider - Wikipedia

    en.wikipedia.org/wiki/Current_divider

    Figure 1: Schematic of an electrical circuit illustrating current division. Notation R T refers to the total resistance of the circuit to the right of resistor R X.. In electronics, a current divider is a simple linear circuit that produces an output current (I X) that is a fraction of its input current (I T).

  6. Electrical network - Wikipedia

    en.wikipedia.org/wiki/Electrical_network

    A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...

  7. Mathematical methods in electronics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_methods_in...

    Ohm's Law: The voltage across a resistor is the product of its resistance and the current flowing through it, at constant temperature. Norton's Theorem: Any two-terminal collection of voltage sources and resistors is electrically equivalent to an ideal current source in parallel with a single resistor.

  8. Source transformation - Wikipedia

    en.wikipedia.org/wiki/Source_transformation

    Source transformations are easy to compute using Ohm's law. If there is a voltage source in series with an impedance, it is possible to find the value of the equivalent current source in parallel with the impedance by dividing the value of the voltage source by the value of the impedance. The converse also holds: if a current source in parallel ...

  9. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    When there are dependent sources, the more general method must be used. The voltage at the terminals is calculated for an injection of a 1 ampere test current at the terminals. This voltage divided by the 1 A current is the Norton impedance R no (in ohms). This method must be used if the circuit contains dependent sources, but it can be used in ...