When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Active-set method - Wikipedia

    en.wikipedia.org/wiki/Active-set_method

    For example, in solving the linear programming problem, the active set gives the hyperplanes that intersect at the solution point. In quadratic programming , as the solution is not necessarily on one of the edges of the bounding polygon, an estimation of the active set gives us a subset of inequalities to watch while searching the solution ...

  3. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.

  4. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    Cutting planes were proposed by Ralph Gomory in the 1950s as a method for solving integer programming and mixed-integer programming problems. However, most experts, including Gomory himself, considered them to be impractical due to numerical instability, as well as ineffective because many rounds of cuts were needed to make progress towards the solution.

  5. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < ⁠ 1 / 2 ⁠ and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < ⁠ 1 / 2 ⁠ .

  6. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  7. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Geometric programming is a technique whereby objective and inequality constraints expressed as posynomials and equality constraints as monomials can be transformed into a convex program. Integer programming studies linear programs in which some or all variables are constrained to take on integer values.

  8. Slack variable - Wikipedia

    en.wikipedia.org/wiki/Slack_variable

    Slack variables give an embedding of a polytope into the standard f-orthant, where is the number of constraints (facets of the polytope). This map is one-to-one (slack variables are uniquely determined) but not onto (not all combinations can be realized), and is expressed in terms of the constraints (linear functionals, covectors).

  9. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming problems can be converted into an augmented form in order to apply the common form of the simplex algorithm. This form introduces non-negative slack variables to replace inequalities with equalities in the constraints.