Search results
Results From The WOW.Com Content Network
A hyperintensity or T2 hyperintensity is an area of high intensity on types of magnetic resonance imaging (MRI) scans of the brain of a human or of another mammal that reflect lesions produced largely by demyelination and axonal loss.
Myelomalacia is a pathological term referring to the softening of the spinal cord. [1] Possible causes of myelomalacia include cervical myelopathy, hemorrhagic infarction, or acute injury, such as that caused by intervertebral disc extrusion.
For example, it can be used in brain imaging to suppress cerebrospinal fluid (CSF) effects on the image, so as to bring out the periventricular hyperintense lesions, such as multiple sclerosis (MS) plaques. [1] It was invented by Graeme Bydder, Joseph Hajnal, and Ian Young in the early 1990s. [2]
T 2 *-weighted sequences are very useful for evaluation of articular cartilages and ligaments because a relatively long T 2 * makes the articular cartilage becomes more hyperintense, while bone becomes hypointense. [2] T 2 *-weighted sequences can be used with MRI contrast, mainly ferucarbotran or superparamagnetic iron oxide (SPIO), to depict ...
CADASIL is a hereditary cerebrovascular disorder associated with T2-hyperintense white matter lesions that have a greater extent and earlier age of onset than age-related leukoaraiosis. See also [ edit ]
Central pontine myelinolysis; Other names: Osmotic demyelination syndrome, central pontine demyelination: Axial fat-saturated T2-weighted image showing hyperintensity in the pons with sparing of the peripheral fibers, the patient was an alcoholic admitted with a serum Na of 101 treated with hypertonic saline, he was left with quadriparesis, dysarthria, and altered mental status
Fluid-attenuated inversion recovery (FLAIR) [2] is an inversion-recovery pulse sequence used to nullify the signal from fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid so as to bring out periventricular hyperintense lesions, such as multiple sclerosis plaques.
Posterior reversible encephalopathy syndrome; Other names: Reversible posterior leukoencephalopathy syndrome (RPLS) Posterior reversible encephalopathy syndrome visible on magnetic resonance imaging as multiple cortico-subcortical areas of T2-weighted hyperintense (white) signal involving the occipital and parietal lobes bilaterally and pons.