Ads
related to: riemann sum to integral notation equation finder worksheet 1 solutions 5th
Search results
Results From The WOW.Com Content Network
In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann . One very common application is in numerical integration , i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule .
Discrete integral calculus is the study of the definitions, properties, and applications of the Riemann sums. The process of finding the value of a sum is called integration . In technical language, integral calculus studies a certain linear operator .
A function F(x) is an h-antiderivative of f(x) if D h F(x) = f(x).The h-integral is denoted by ().If a and b differ by an integer multiple of h then the definite integral () is given by a Riemann sum of f(x) on the interval [a, b], partitioned into sub-intervals of equal width h.
A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.
Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...
The integral as the area of a region under a curve. A sequence of Riemann sums over a regular partition of an interval. The number on top is the total area of the rectangles, which converges to the integral of the function.
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
Among the new definitions, ideas, and notation introduced: The use of the Greek letter zeta (ζ) for a function previously mentioned by Euler; The analytic continuation of this zeta function ζ to all complex s ≠ 1; The entire function ξ(s), related to the zeta function through the gamma function (or the Π function, in Riemann's usage)