Search results
Results From The WOW.Com Content Network
Nanomanufacturing refers to manufacturing processes of objects or material with dimensions between one and one hundred nanometers. [15] These processes results in nanotechnology, extremely small devices, structures, features, and systems that have applications in organic chemistry, molecular biology, aerospace engineering, physics, and beyond. [16]
The process used to produce these materials is a combination of the replication method, typically used to produce large-pore foams, and the selective dissolution method, generally used to manufacture small-pore foams. [21] Ag foams with hierarchical porous structures are prepared by the following three-step method: [21]
The sol–gel process is a wet-chemical technique used for the fabrication of both glassy and ceramic materials. In this process, the sol (or solution) evolves gradually towards the formation of a gel-like network containing both a liquid phase and a solid phase.
The substrate is heated to approximately 700 °C. To initiate the growth of nanotubes, two gases are bled into the reactor: a process gas (such as ammonia, nitrogen or hydrogen) and a carbon-containing gas (such as acetylene, ethylene, ethanol or methane). Nanotubes grow at the sites of the metal catalyst; the carbon-containing gas is broken ...
These results suggest that inorganic nanomaterials, in general, may be better reinforcing agents compared to carbon nanotubes. Another kind of nanocomposite is the energetic nanocomposite, generally as a hybrid sol–gel with a silica base, which, when combined with metal oxides and nano-scale aluminum powder, can form superthermite materials.
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter.
One process for making nanoceramics varies is the sol-gel process, also known as chemical solution deposition. This involves a chemical solution, or the sol, made of nanoparticles in liquid phase and a precursor, usually a gel or polymer, made of molecules immersed in a solvent. The sol and gel are mixed to produce an oxide material which are ...
Nanomaterials can also be used in three-way-catalyst applications, which have the advantage of controlling the emission of nitrogen oxides (NO x), which are precursors to acid rain and smog. [45] In core-shell structure, nanomaterials form shell as the catalyst support to protect the noble metals such as palladium and rhodium. [46]