Ads
related to: how to reduce odd fractions to negative one hundred hours
Search results
Results From The WOW.Com Content Network
The article by Boas analyzes two-digit cases in bases other than base 10, e.g., 32 / 13 = 2 / 1 and its inverse are the only solutions in base 4 with two digits. [2]An example of anomalous cancellation with more than two digits is 165 / 462 = 15 / 42 , and an example with different numbers of digits is 98 / 392 = 8 / 32 .
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a × b = a × c , then the multiplicative term a can be canceled out if a ≠0, resulting in the equivalent expression b = c ; this is equivalent to dividing through by a .
The odd greedy algorithm cannot terminate when given a fraction with an even denominator, because these fractions do not have finite representations with odd denominators. Therefore, in this case, it produces an infinite series expansion of its input. For instance Sylvester's sequence can be viewed as generated by the odd greedy expansion of 1/2.
An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1]
For example, the process of rewriting a fraction into one with the smallest whole-number denominator possible (while keeping the numerator a whole number) is called "reducing a fraction". Rewriting a radical (or "root") expression with the smallest possible whole number under the radical symbol is called "reducing a radical".
Because of the rules of division of signed numbers (which states in part that negative divided by positive is negative), − 1 / 2 , −1 / 2 and 1 / −2 all represent the same fraction – negative one-half. And because a negative divided by a negative produces a positive, −1 / −2 represents positive one-half.
The simplest fraction 3 / y with a three-term expansion is 3 / 7 . A fraction 4 / y requires four terms in its greedy expansion if and only if y ≡ 1 or 17 (mod 24), for then the numerator −y mod x of the remaining fraction is 3 and the denominator is 1 (mod 6). The simplest fraction 4 / y with a four-term ...
The numbers d i are non-negative integers less than β. This is also known as a β-expansion, a notion introduced by Rényi (1957) and first studied in detail by Parry (1960). Every real number has at least one (possibly infinite) β-expansion. The set of all β-expansions that have a finite representation is a subset of the ring Z[β, β −1