Search results
Results From The WOW.Com Content Network
If P, then Q. P. Therefore, Q. The first premise is a conditional ("if–then") claim, namely that P implies Q. The second premise is an assertion that P, the antecedent of the conditional claim, is the case. From these two premises it can be logically concluded that Q, the consequent of the conditional claim, must be the case as well.
Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.
Modus ponens (sometimes abbreviated as MP) says that if one thing is true, then another will be. It then states that the first is true. The conclusion is that the second thing is true. [3] It is shown below in logical form. If A, then B A Therefore B. Before being put into logical form the above statement could have been something like below.
The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or ...
For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q , or the falsity of Q ensures the falsity of P .) [ 1 ] Similarly, P is sufficient for Q , because P being true always implies that Q is true, but P not being ...
An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the protasis. [1] Examples: If , then . This is a nonlogical formulation of a hypothetical proposition. In this case, the antecedent is P, and the consequent is Q.
The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
So, assuming A is the same as assuming "If A, then B". Therefore, in assuming A, we have assumed both A and "If A, then B". Therefore, B is true, by modus ponens, and we have proven "If this sentence is true, then 'Germany borders China' is true." in the usual way, by assuming the hypothesis and deriving the conclusion.