When.com Web Search

  1. Ads

    related to: pythagorean theorem calculation problems practice worksheet printable

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. IM 67118 - Wikipedia

    en.wikipedia.org/wiki/IM_67118

    IM 67118, also known as Db 2-146, is an Old Babylonian clay tablet in the collection of the Iraq Museum that contains the solution to a problem in plane geometry concerning a rectangle with given area and diagonal. In the last part of the text, the solution is proved correct using the Pythagorean theorem. The steps of the solution are believed ...

  4. Zhoubi Suanjing - Wikipedia

    en.wikipedia.org/wiki/Zhoubi_Suanjing

    Each problem includes an answer and a corresponding arithmetic algorithm. It is an important source on early Chinese cosmology , glossing the ancient idea of a round heaven over a square earth ( 天 圆 地 方 , tiānyuán dìfāng ) as similar to the round parasol suspended over some ancient Chinese chariots [ 10 ] or a Chinese chessboard ...

  5. Pythagorean addition - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_addition

    In mathematics, Pythagorean addition is a binary operation on the real numbers that computes the length of the hypotenuse of a right triangle, given its two sides.According to the Pythagorean theorem, for a triangle with sides and , this length can be calculated as = +, where denotes the Pythagorean addition operation.

  6. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    Comparing squared distances produces the same result but avoids an unnecessary square-root calculation and sidesteps issues of numerical precision. [16] As an equation, the squared distance can be expressed as a sum of squares; it is more similar to the common statement of the pythagorean theorem:

  7. Garfield's proof of the Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Garfield's_proof_of_the...

    Garfield's proof of the Pythagorean theorem is an original proof the Pythagorean theorem discovered by James A. Garfield (November 19, 1831 – September 19, 1881), the 20th president of the United States. The proof appeared in print in the New-England Journal of Education (Vol. 3, No.14, April 1, 1876).