Search results
Results From The WOW.Com Content Network
In statistics, there is a negative relationship or inverse relationship between two variables if higher values of one variable tend to be associated with lower values of the other. A negative relationship between two variables usually implies that the correlation between them is negative, or — what is in some contexts equivalent — that the ...
The converse (inverse) of a transitive relation is always transitive. For instance, knowing that "is a subset of" is transitive and "is a superset of" is its converse, one can conclude that the latter is transitive as well. The intersection of two transitive relations is always transitive. [4]
The correlation coefficient is +1 in the case of a perfect direct (increasing) linear relationship (correlation), −1 in the case of a perfect inverse (decreasing) linear relationship (anti-correlation), [5] and some value in the open interval (,) in all other cases, indicating the degree of linear dependence between the variables. As it ...
The representation of R div as a Boolean matrix is shown in the middle table; the representation both as a Hasse diagram and as a directed graph is shown in the left picture. The following are equivalent: x R div y is true. (x,y) ∈ R div. A path from x to y exists in the Hasse diagram representing R div.
With inverse proportion, an increase in one variable is associated with a decrease in the other. For instance, in travel, a constant speed dictates a direct proportion between distance and time travelled; in contrast, for a given distance (the constant), the time of travel is inversely proportional to speed: s × t = d .
In mathematics, inverse relation may refer to: Converse relation or "transpose", in set theory; Negative relationship, in statistics; Inverse proportionality; Relation between two sequences, expressing each of them in terms of the other
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Although many functions do not have an inverse, every relation does have a unique converse. The unary operation that maps a relation to the converse relation is an involution , so it induces the structure of a semigroup with involution on the binary relations on a set, or, more generally, induces a dagger category on the category of relations ...