Search results
Results From The WOW.Com Content Network
These approaches combine a pseudo-random number generator (often in the form of a block or stream cipher) with an external source of randomness (e.g., mouse movements, delay between keyboard presses etc.). /dev/random – Unix-like systems; CryptGenRandom – Microsoft Windows; Fortuna
In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...
The same set of APIs defined in the NumPy package (numpy.*) are available under cupy.* package. Multi-dimensional array (cupy.ndarray) for boolean, integer, float, and complex data types; Module-level functions; Linear algebra functions; Fast Fourier transform; Random number generator
It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...
Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance.
The design of an NPTRNG is traditional for TRNGs: a noise source is followed by a postprocessing randomness extractor and, optionally, with a pseudorandom number generator (PRNG) seeded by the true random bits. As of 2014, the Linux NPTRNG implementation extracted the entropy from: [8]
Random number generation in kernel space was implemented for the first time for Linux [2] in 1994 by Theodore Ts'o. [6] The implementation used secure hashes rather than ciphers, [clarification needed] to avoid cryptography export restrictions that were in place when the generator was originally designed.
The MIXMAX generator is a family of pseudorandom number generators (PRNG) and is based on Anosov C-systems (Anosov diffeomorphism) and Kolmogorov K-systems (Kolmogorov automorphism). It was introduced in a 1986 preprint by G. Savvidy and N. Ter-Arutyunyan-Savvidy and published in 1991.