When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    This follows from the left side of the equation being equal to zero, requiring the right side to equal zero as well, and so the vector sum of a + b (the long diagonal of the rhombus) dotted with the vector difference a - b (the short diagonal of the rhombus) must equal zero, which indicates the diagonals are perpendicular.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    It is also not a multiple of 5 because its last digit is 7. The next odd divisor to be tested is 7. One has 77 = 7 · 11, and thus n = 2 · 3 2 · 7 · 11. This shows that 7 is prime (easy to test directly). Continue with 11, and 7 as a first divisor candidate. As 7 2 > 11, one has finished. Thus 11 is prime, and the prime factorization is ...

  4. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    999 = 3 3 ×37, 1000 = 2 3 ×5 3, 1001 = 7×11×13. Factors p 0 = 1 may be inserted without changing the value of n (for example, 1000 = 2 3 ×3 0 ×5 3). In fact, any positive integer can be uniquely represented as an infinite product taken over all the positive prime numbers, as

  5. Euler's factorization method - Wikipedia

    en.wikipedia.org/wiki/Euler's_factorization_method

    The great disadvantage of Euler's factorization method is that it cannot be applied to factoring an integer with any prime factor of the form 4k + 3 occurring to an odd power in its prime factorization, as such a number can never be the sum of two squares.

  6. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will begin with ⌈ √ n ⌉ = 18848997159 which immediately yields b = √ a 2 − n = √ 4 = 2 and hence the factors a − b = 18848997157 and a + b = 18848997161.

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    On the other hand, the primes 3, 7, 11, 19, 23 and 31 are all congruent to 3 modulo 4, and none of them can be expressed as the sum of two squares. This is the easier part of the theorem, and follows immediately from the observation that all squares are congruent to 0 (if number squared is even) or 1 (if number squared is odd) modulo 4.

  8. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    There are eight factorizations of 6 (four each for 1×6 and 2×3), making a total of 4×4×8 = 128 possible triples (p(0), p(1), p(−1)), of which half can be discarded as the negatives of the other half. Thus, we must check 64 explicit integer polynomials () = + + as possible factors of (). Testing them exhaustively reveals that

  9. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Area of a cloth 4.5m × 2.5m = 11.25m 2; 4 ⁠ 1 / 2 ⁠ × 2 ⁠ 1 / 2 ⁠ = 11 ⁠ 1 / 4 ⁠ Multiplication (often denoted by the cross symbol × , by the mid-line dot operator ⋅ , by juxtaposition, or, on computers, by an asterisk * ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition ...