Search results
Results From The WOW.Com Content Network
If n is an odd composite integer that satisfies the above congruence, then n is called an Euler–Jacobi pseudoprime (or, more commonly, an Euler pseudoprime) to base a. As long as a is not a multiple of n (usually 2 ≤ a < n), then if a and n are not coprime, n is definitely composite, as 1 < gcd(a,n) < n is a factor of n.
A composite number with two prime factors is a semiprime or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of distinct prime ...
Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive ...
In mathematics, an odd composite integer n is called an Euler pseudoprime to base a, if a and n are coprime, and / ()(where mod refers to the modulo operation).. The motivation for this definition is the fact that all prime numbers p satisfy the above equation which can be deduced from Fermat's little theorem.
The following facts, even the reciprocity laws, are straightforward deductions from the definition of the Jacobi symbol and the corresponding properties of the Legendre symbol. [2] The Jacobi symbol is defined only when the upper argument ("numerator") is an integer and the lower argument ("denominator") is a positive odd integer. 1.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
If n is a power of an odd prime number the formula for the totient says its totient can be a power of two only if n is a first power and n − 1 is a power of 2. The primes that are one more than a power of 2 are called Fermat primes , and only five are known: 3, 5, 17, 257, and 65537.
While all prime n pass this test, a composite n passes it if and only if n is a Frobenius pseudoprime for (,) = (,). Similar to the above example, Khashin notes that no pseudoprime has been found for his test. He further shows that any that exist under 2 60 must have a factor less than 19 or have c > 128.