When.com Web Search

  1. Ads

    related to: how to solve the domain

Search results

  1. Results From The WOW.Com Content Network
  2. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...

  3. Spectral method - Wikipedia

    en.wikipedia.org/wiki/Spectral_method

    Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients ...

  4. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  5. Domain (mathematical analysis) - Wikipedia

    en.wikipedia.org/wiki/Domain_(mathematical_analysis)

    In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.

  7. Dirichlet problem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_problem

    For a domain having a sufficiently smooth boundary , the general solution to the Dirichlet problem is given by = (,),where (,) is the Green's function for the partial differential equation, and

  8. Additive Schwarz method - Wikipedia

    en.wikipedia.org/wiki/Additive_Schwarz_method

    Which brings us to domain decomposition methods. If we split the domain [0,1] × [0,1] into two subdomains [0,0.5] × [0,1] and [0.5,1] × [0,1], each has only half of the sample points. So we can try to solve a version of our model problem on each subdomain, but this time each subdomain has only 32 sample points.

  9. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    Characteristics may fail to cover part of the domain of the PDE. This is called a rarefaction, and indicates the solution typically exists only in a weak, i.e. integral equation, sense. The direction of the characteristic lines indicates the flow of values through the solution, as the example above demonstrates.

  1. Ad

    related to: how to solve the domain