Ads
related to: how to solve the domaindomain.com has been visited by 10K+ users in the past month
comparingwebhosting.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...
Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients ...
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.
To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.
For a domain having a sufficiently smooth boundary , the general solution to the Dirichlet problem is given by = (,),where (,) is the Green's function for the partial differential equation, and
Which brings us to domain decomposition methods. If we split the domain [0,1] × [0,1] into two subdomains [0,0.5] × [0,1] and [0.5,1] × [0,1], each has only half of the sample points. So we can try to solve a version of our model problem on each subdomain, but this time each subdomain has only 32 sample points.
Characteristics may fail to cover part of the domain of the PDE. This is called a rarefaction, and indicates the solution typically exists only in a weak, i.e. integral equation, sense. The direction of the characteristic lines indicates the flow of values through the solution, as the example above demonstrates.
Ad
related to: how to solve the domaindomain.com has been visited by 10K+ users in the past month