Search results
Results From The WOW.Com Content Network
An example of a Python generator returning an iterator for the Fibonacci numbers using Python's yield statement follows: def fibonacci ( limit ): a , b = 0 , 1 for _ in range ( limit ): yield a a , b = b , a + b for number in fibonacci ( 100 ): # The generator constructs an iterator print ( number )
Python's tuple assignment, fully available in its foreach loop, also makes it trivial to iterate on (key, value) pairs in dictionaries: for key , value in some_dict . items (): # Direct iteration on a dict iterates on its keys # Do stuff
A representative example in Python is: for an item in some_iterable_object : do_something () do_something_else () Where some_iterable_object is either a data collection that supports implicit iteration (like a list of employee's names), or may be an iterator itself.
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in.
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
In mathematics, iteration may refer to the process of iterating a function, i.e. applying a function repeatedly, using the output from one iteration as the input to the next. Iteration of apparently simple functions can produce complex behaviors and difficult problems – for examples, see the Collatz conjecture and juggler sequences.
In this particular example, the Newton iteration is given by ... The following is an example of a possible implementation of Newton's method in the Python ...
At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.