When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Resultant - Wikipedia

    en.wikipedia.org/wiki/Resultant

    Macaulay's resultant is a polynomial in the coefficients of these n homogeneous polynomials that vanishes if and only if the polynomials have a common non-zero solution in an algebraically closed field containing the coefficients, or, equivalently, if the n hyper surfaces defined by the polynomials have a common zero in the n –1 dimensional ...

  3. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    An alternative approach, e.g., defining the normal matrix as = of size , takes advantage of the fact that for a given matrix with orthonormal columns the eigenvalue problem of the Rayleigh–Ritz method for the matrix = = can be interpreted as a singular value problem for the matrix . This interpretation allows simple simultaneous calculation ...

  4. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this ...

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Admissible solutions are then a linear combination of solutions to the generalized eigenvalue problem = where is the eigenvalue and is the (imaginary) angular frequency. The principal vibration modes are different from the principal compliance modes, which are the eigenvectors of k {\displaystyle k} alone.

  6. Rayleigh's quotient in vibrations analysis - Wikipedia

    en.wikipedia.org/wiki/Rayleigh's_quotient_in...

    A good way to estimate the lowest modal vector (), that generally works well for most structures (even though is not guaranteed), is to assume () equal to the static displacement from an applied force that has the same relative distribution of the diagonal mass matrix terms. The latter can be elucidated by the following 3-DOF example.

  7. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    If M is such that LCP(q, M) has a solution for every q, then M is a Q-matrix. If M is such that LCP(q, M) have a unique solution for every q, then M is a P-matrix. Both of these characterizations are sufficient and necessary. [4] The vector w is a slack variable, [5] and so is generally discarded after z is found. As such, the problem can also ...

  8. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    Let the field K be the set R of real numbers, and let the vector space V be the Euclidean space R 3. Consider the vectors e 1 = (1,0,0), e 2 = (0,1,0) and e 3 = (0,0,1). Then any vector in R 3 is a linear combination of e 1, e 2, and e 3. To see that this is so, take an arbitrary vector (a 1,a 2,a 3) in R 3, and write:

  9. False diffusion - Wikipedia

    en.wikipedia.org/wiki/False_diffusion

    where U is the resultant velocity and θ is the angle made by the velocity vector with the x direction. False diffusion is absent when the resultant flow is aligned with either of the sets of grid lines and is greatest when the flow direction is 45˚ to the grid lines.