Search results
Results From The WOW.Com Content Network
One of the functions of many types of multimeters is the measurement of resistance in ohms.. The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt (V), applied to these points, produces in the conductor a current of one ampere (A), the conductor not being the seat of any electromotive force.
Among the textbooks published after Jackson's book, Julian Schwinger's 1970s lecture notes is a mentionable book first published in 1998 posthumously. Due to the domination of Jackson's textbook in graduate physics education, even physicists like Schwinger became frustrated competing with Jackson and because of this, the publication of ...
Ohm explained his experimental results by a slightly more complex equation than the modern form above (see § History below). In physics, the term Ohm's law is also used to refer to various generalizations of the law; for example the vector form of the law used in electromagnetics and material science:
Most metals have electrical resistance. In simpler models (non quantum mechanical models) this can be explained by replacing electrons and the crystal lattice by a wave-like structure. When the electron wave travels through the lattice, the waves interfere, which causes resistance. The more regular the lattice is, the less disturbance happens ...
Ohm's law is satisfied when the graph is a straight line through the origin. Therefore, the two resistors are ohmic, but the diode and battery are not. For many materials, the current I through the material is proportional to the voltage V applied across it: over a wide range of voltages and currents. Therefore, the resistance and conductance ...
First, the meter needs to be zeroed by shorting the measurement points together and performing an adjustment for zero ohms indication prior to each measurement. This is because as the battery voltage decreases with age, the series resistance in the meter needs to be reduced to maintain the zero indication at full deflection.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
For example, a 10 ohm resistor connected in parallel with a 5 ohm resistor and a 15 ohm resistor produces 1 / 1/10 + 1/5 + 1/15 ohms of resistance, or 30 / 11 = 2.727 ohms. A resistor network that is a combination of parallel and series connections can be broken up into smaller parts that are either one or the other.