When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The term vector was coined by W. R. Hamilton around 1843, as he revealed quaternions, a system which uses vectors and scalars to span a four-dimensional space. For a quaternion q = a + bi + cj + dk, Hamilton used two projections: S q = a, for the scalar part of q, and V q = bi + cj + dk, the vector part.

  3. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In vector calculus, the derivative of a vector function y with respect to a vector x whose components represent a space is known as the pushforward (or differential), or the Jacobian matrix. The pushforward along a vector function f with respect to vector v in R n is given by () =.

  4. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    In linear algebra, a column vector with ⁠ ⁠ elements is an matrix [1] consisting of a single column of ⁠ ⁠ entries, for example, = [].. Similarly, a row vector is a matrix for some ⁠ ⁠, consisting of a single row of ⁠ ⁠ entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    If V and W are vector spaces, then the kernel of a linear transformation T: V → W is the set of vectors vV for which T(v) = 0. The kernel of a linear transformation is analogous to the null space of a matrix. If V is an inner product space, then the

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For a matrix A to describe a linear map f : V → W, bases for both spaces must have been chosen; recall that by definition this means that every vector in the space can be written uniquely as a (finite) linear combination of basis vectors, so that written as a (column) vector ve of coefficients, only finitely many entries v I are nonzero.

  7. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    For any vector space V, the projection X × V → X makes the product X × V into a "trivial" vector bundle. Vector bundles over X are required to be locally a product of X and some (fixed) vector space V: for every x in X, there is a neighborhood U of x such that the restriction of π to π −1 (U) is isomorphic [nb 11] to the trivial bundle ...

  8. Real coordinate space - Wikipedia

    en.wikipedia.org/wiki/Real_coordinate_space

    In standard matrix notation, each element of R n is typically written as a column vector = [] and sometimes as a row vector: = []. The coordinate space R n may then be interpreted as the space of all n × 1 column vectors , or all 1 × n row vectors with the ordinary matrix operations of addition and scalar multiplication .

  9. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.