Search results
Results From The WOW.Com Content Network
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
The Latin word data is the plural of datum, "(thing) given," and the neuter past participle of dare, "to give". [6] The first English use of the word "data" is from the 1640s. The word "data" was first used to mean "transmissible and storable computer information" in 1946. The expression "data processing" was first used in 1954. [6]
Benford's law, which describes the frequency of the first digit of many naturally occurring data. The ideal and robust soliton distributions. Zipf's law or the Zipf distribution. A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language.
In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions.Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. [1]
For this reason, published data on, for example, gross domestic product will show a sequence of quarterly values. When one attempts to empirically explain such variables in terms of other variables and/or their own prior values, one uses time series or regression methods in which variables are indexed with a subscript indicating the time period ...
A numerical univariate data is discrete if the set of all possible values is finite or countably infinite. Discrete univariate data are usually associated with counting (such as the number of books read by a person). A numerical univariate data is continuous if the set of all possible values is an interval of numbers.
A partial function is discontinuous at a point if the point belongs to the topological closure of its domain, and either the point does not belong to the domain of the function or the function is not continuous at the point. For example, the functions and are discontinuous at 0, and remain discontinuous whichever value is chosen for ...
In physics, for example, the space-time continuum model describes space and time as part of the same continuum rather than as separate entities. A spectrum in physics, such as the electromagnetic spectrum, is often termed as either continuous (with energy at all wavelengths) or discrete (energy at only certain wavelengths).