Search results
Results From The WOW.Com Content Network
(Note that the directions of the inequalities are reversed from those in the additive notation.) If Γ is a subgroup of the positive real numbers under multiplication, the last condition is the ultrametric inequality, a stronger form of the triangle inequality |a+b| v ≤ |a| v + |b| v, and | ⋅ | v is an absolute value.
The graph of the absolute value function for real numbers The absolute value of a number may be thought of as its distance from zero. In mathematics , the absolute value or modulus of a real number x {\displaystyle x} , denoted | x | {\displaystyle |x|} , is the non-negative value of x {\displaystyle x} without regard to its sign .
The absolute value | | is a norm on the vector space formed by the real or complex numbers. The complex numbers form a one-dimensional vector space over themselves and a two-dimensional vector space over the reals; the absolute value is a norm for these two structures.
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).
The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...
The rules for the additive inverse, and the multiplicative inverse for positive numbers, are both examples of applying a monotonically decreasing function. If the inequality is strict (a < b, a > b) and the function is strictly monotonic, then the inequality remains strict. If only one of these conditions is strict, then the resultant ...
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.