When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...

  3. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient is related to the differential by the formula = for any , where is the dot product: taking the dot product of a vector with the gradient is the same as taking the directional derivative along the vector.

  4. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    By example, in physics, the electric field is the negative vector gradient of the electric potential. The directional derivative of a scalar function f(x) of the space vector x in the direction of the unit vector u (represented in this case as a column vector) is defined using the gradient as follows.

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  6. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:

  7. Geometric calculus - Wikipedia

    en.wikipedia.org/wiki/Geometric_calculus

    From this follows that the directional derivative is the inner product of its direction by the vector derivative. All needs to be observed is that the direction a {\displaystyle a} can be written a = ( a ⋅ e i ) e i {\displaystyle a=(a\cdot e^{i})e_{i}} , so that:

  8. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function ...

  9. Functional derivative - Wikipedia

    en.wikipedia.org/wiki/Functional_derivative

    A formula to determine functional derivatives for a common class of functionals can be written as the integral of a function and its derivatives. This is a generalization of the Euler–Lagrange equation : indeed, the functional derivative was introduced in physics within the derivation of the Lagrange equation of the second kind from the ...