Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The Poisson distribution is often used to model the number of rare event occurrences during a fixed period of time. It is characterized by a single parameter, λ, which is both the mean and variance of the distribution. The discrete Weibull distribution, on the other hand, is more flexible and can handle both over- and under-dispersion in count ...
The Weibull modulus is a dimensionless parameter of the Weibull distribution. It represents the width of a probability density function (PDF) in which a higher modulus is a characteristic of a narrower distribution of values.
They showed that the exponentiated Weibull distribution has increasing, decreasing, bathtub, and unimodal hazard rates. The exponentiated exponential distribution proposed by Gupta and Kundu (1999, 2001) is a special case of the exponentiated Weibull family. Later, the moments of the EW distribution were derived by Choudhury (2005).
The Fréchet distribution, also known as inverse Weibull distribution, [2] [3] is a special case of the generalized extreme value distribution. It has the cumulative distribution function ( ) = > . where α > 0 is a shape parameter.
Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables. In some fields of application the generalized extreme value distribution is known as the Fisher–Tippett distribution, named after R.A. Fisher and L.H.C. Tippett who recognised three different forms outlined ...
The q-Weibull is a generalization of the Weibull, as it extends this distribution to the cases of finite support (q < 1) and to include heavy-tailed distributions (+ +). The q -Weibull is a generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support and adds the κ {\displaystyle ...