When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    The primary improvement that quadratic sieve makes over Fermat's factorization method is that instead of simply finding a square in the sequence of , it finds a subset of elements of this sequence whose product is a square, and it does this in a highly efficient manner.

  3. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    Dixon's method replaces the condition "is the square of an integer" with the much weaker one "has only small prime factors"; for example, there are 292 squares smaller than 84923; 662 numbers smaller than 84923 whose prime factors are only 2,3,5 or 7; and 4767 whose prime factors are all less than 30.

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    This corresponds to a set of y values whose product is a square number, i.e. one whose factorization has only even exponents. The products of x and y values together form a congruence of squares. This is a classic system of linear equations problem, and can be efficiently solved using Gaussian elimination as soon as the number of rows exceeds ...

  6. Shanks's square forms factorization - Wikipedia

    en.wikipedia.org/wiki/Shanks's_square_forms...

    Shanks' square forms factorization is a method for integer factorization devised by Daniel Shanks as an improvement on Fermat's factorization method. The success of Fermat's method depends on finding integers x {\displaystyle x} and y {\displaystyle y} such that x 2 − y 2 = N {\displaystyle x^{2}-y^{2}=N} , where N {\displaystyle N} is the ...

  7. Eight queens puzzle - Wikipedia

    en.wikipedia.org/wiki/Eight_queens_puzzle

    Let (i, j) be the square in column i and row j on the n × n chessboard, k an integer. One approach [3] is If the remainder from dividing n by 6 is not 2 or 3 then the list is simply all even numbers followed by all odd numbers not greater than n. Otherwise, write separate lists of even and odd numbers (2, 4, 6, 8 – 1, 3, 5, 7).

  8. Correctness (computer science) - Wikipedia

    en.wikipedia.org/wiki/Correctness_(computer_science)

    But to say this program is totally correct would be to assert something currently not known in number theory. A proof would have to be a mathematical proof, assuming both the algorithm and specification are given formally. In particular it is not expected to be a correctness assertion for a given program implementing the algorithm on a given ...

  9. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.