When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    A loglog plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).

  3. Revoscalepy - Wikipedia

    en.wikipedia.org/wiki/Revoscalepy

    The package contains functions for creating linear model, logistic regression, random forest, decision tree and boosted decision tree, in addition to some summary functions for inspecting data. [2] Other machine learning algorithms such as neural network are provided in microsoftml, a separate package that is the Python version of MicrosoftML.

  4. Predicted Aligned Error - Wikipedia

    en.wikipedia.org/wiki/Predicted_Aligned_Error

    Users can download the raw PAE data for all residue pairs in a custom JSON format for further analysis or visualization using a programming language such as Python. The format of the JSON file is as follows:

  5. Logarithmic scale - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_scale

    A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis. Presentation of data on a logarithmic scale can be helpful when the data:

  6. Parity plot - Wikipedia

    en.wikipedia.org/wiki/Parity_plot

    A parity plot is a scatterplot that compares a set of results from a computational model against benchmark data. Each point has coordinates (x, y), where x is a benchmark value and y is the corresponding value from the model. [1] A line of the equation y = x, representing perfect model performance, is sometimes added as a reference. Where the ...

  7. Log-distance path loss model - Wikipedia

    en.wikipedia.org/wiki/Log-distance_path_loss_model

    The log-distance path loss model is a radio propagation model that predicts the path loss a signal encounters inside a building or densely populated areas over long distance. While the log-distance model is suitable for longer distances, the short-distance path loss model is often used for indoor environments or very short outdoor distances.

  8. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    In the language of tropical analysis, the softmax is a deformation or "quantization" of arg max and arg min, corresponding to using the log semiring instead of the max-plus semiring (respectively min-plus semiring), and recovering the arg max or arg min by taking the limit is called "tropicalization" or "dequantization".

  9. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way regression. That is, we model the logarithm of the probability of seeing a given output using the linear predictor as well as an additional normalization factor, the logarithm of the partition function: