Search results
Results From The WOW.Com Content Network
If the chord has length b and is perpendicular to the parabola's axis of symmetry, and if the perpendicular distance from the parabola's vertex to the chord is h, the parallelogram is a rectangle, with sides of b and h. The area A of the parabolic segment enclosed by the parabola and the chord is therefore =.
The major axis is the chord between the two vertices: the longest chord of an ellipse, the shortest chord between the branches of a hyperbola. Its half-length is the semi-major axis ( a ). When an ellipse or hyperbola are in standard position as in the equations below, with foci on the x -axis and center at the origin, the vertices of the conic ...
The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.
The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a: that is, = (lacking a center, the linear eccentricity for parabolas is not defined). It is worth to note that a parabola can be treated as an ellipse or a hyperbola, but with one focal point at infinity .
Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below). A circle is an ellipse with both foci coinciding at the center.
Solid paraboloid around z-axis: a, b = the principal semi-axes of the base ellipse c = the principal z-semi-axe from the center of base ellipse See also. List of ...
The directions of the axes of the hyperbola are determined by the ordinate of the minimum point of the corresponding parabola = + +. If the ordinate is negative, then the hyperbola's major axis (through its vertices) is horizontal, while if the ordinate is positive then the hyperbola's major axis is vertical.
By the principal axis theorem, the two eigenvectors of the matrix of the quadratic form of a central conic section (ellipse or hyperbola) are perpendicular (orthogonal to each other) and each is parallel to (in the same direction as) either the major or minor axis of the conic.