When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Binary variables can be generalized to categorical variables when there are more than two possible values (e.g. whether an image is of a cat, dog, lion, etc.), and the binary logistic regression generalized to multinomial logistic regression. If the multiple categories are ordered, one can use the ordinal logistic regression (for example the ...

  3. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    It is also possible to formulate multinomial logistic regression as a latent variable model, following the two-way latent variable model described for binary logistic regression. This formulation is common in the theory of discrete choice models, and makes it easier to compare multinomial logistic regression to the related multinomial probit ...

  4. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    The multilevel regression is the use of a multilevel model to smooth noisy estimates in the cells with too little data by using overall or nearby averages. One application is estimating preferences in sub-regions (e.g., states, individual constituencies) based on individual-level survey data gathered at other levels of aggregation (e.g ...

  5. Conditional logistic regression - Wikipedia

    en.wikipedia.org/.../Conditional_logistic_regression

    Conditional logistic regression is an extension of logistic regression that allows one to account for stratification and matching. Its main field of application is observational studies and in particular epidemiology. It was devised in 1978 by Norman Breslow, Nicholas Day, Katherine Halvorsen, Ross L. Prentice and C. Sabai. [1]

  6. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  7. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]

  8. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    It might then be observed that income levels also vary depending on the city and state of residence. A simple way to incorporate this into the regression model would be to add an additional independent categorical variable to account for the location (i.e. a set of additional binary predictors and associated regression coefficients, one per ...

  9. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    An example is polynomial regression, which uses a linear predictor function to fit an arbitrary degree polynomial relationship (up to a given order) between two sets of data points (i.e. a single real-valued explanatory variable and a related real-valued dependent variable), by adding multiple explanatory variables corresponding to various ...