When.com Web Search

  1. Ads

    related to: 3 step variable equation solver

Search results

  1. Results From The WOW.Com Content Network
  2. Bogacki–Shampine method - Wikipedia

    en.wikipedia.org/wiki/Bogacki–Shampine_method

    The Bogacki–Shampine method is implemented in the ode3 for fixed step solver and ode23 for a variable step solver function in MATLAB (Shampine & Reichelt 1997). Low-order methods are more suitable than higher-order methods like the Dormand–Prince method of order five, if only a crude approximation to the solution is required.

  3. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Single-step methods (such as Euler's method) refer to only one previous point and its derivative to determine the current value. Methods such as Runge–Kutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt ...

  4. Microsoft Math Solver - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Math_Solver

    Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.

  5. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]

  6. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.

  7. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: In the first equation, solve for one of the variables in terms of the others. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown.

  8. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    The coefficients found by Fehlberg for Formula 1 (derivation with his parameter α 2 =1/3) are given in the table below, using array indexing of base 1 instead of base 0 to be compatible with most computer languages:

  9. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    The consequence of this difference is that at every step, a system of algebraic equations has to be solved. This increases the computational cost considerably. If a method with s stages is used to solve a differential equation with m components, then the system of algebraic equations has ms components.