Search results
Results From The WOW.Com Content Network
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
With this information it is possible using the haversine formula to calculate the latitude where the position line crosses the assumed longitude. The formula is: The formula is: h a v ( M Z D ) = h a v ( T Z D ) − h a v ( L H A ) c o s ( L a t ) c o s ( D e c ) {\displaystyle hav(MZD)=hav(TZD)-hav(LHA)cos(Lat)cos(Dec)}
Computes the great circle distance between two points, specified by the latitude and longitude, using the haversine formula. Template parameters [Edit template data] Parameter Description Type Status Latitude 1 lat1 1 Latitude of point 1 in decimal degrees Default 0 Number required Longitude 1 long1 2 Longitude of point 1 in decimal degrees Default 0 Number required Latitude 2 lat2 3 Latitude ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown.. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them.
If a navigator begins at P 1 = (φ 1,λ 1) and plans to travel the great circle to a point at point P 2 = (φ 2,λ 2) (see Fig. 1, φ is the latitude, positive northward, and λ is the longitude, positive eastward), the initial and final courses α 1 and α 2 are given by formulas for solving a spherical triangle
latitude of the points; U 1 = arctan( (1 − ƒ) tan Φ 1), U 2 = arctan( (1 − ƒ) tan Φ 2) reduced latitude (latitude on the auxiliary sphere) L 1, L 2: longitude of the points; L = L 2 − L 1: difference in longitude of two points; λ: Difference in longitude of the points on the auxiliary sphere; α 1, α 2: forward azimuths at the ...
View from the Swabian Jura to the Alps. Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length.. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude.
lat = Latitude dec = Declination LHA = Local Hour Angle. These computations can be done easily using electronic calculators or computers but traditionally there were methods which used logarithm or haversine tables. Some of these methods were H.O. 211 (Ageton), Davies, haversine, etc. The relevant haversine formula for Hc is