Ads
related to: combustion chamber wall temperature controller
Search results
Results From The WOW.Com Content Network
By setting the controls (thermostats or controller with temperature sensors) with greater temperature differentials between STOP and START. At Non-Condensing Boilers make provisions so that minimum return water temperature of 130 °F (54 °C) to 150 °F (66 °C) to the boiler to avoid fireside corrosion.
A combustion chamber is part of an internal combustion engine in which the fuel/air mix is burned. For steam engines, the term has also been used for an extension of the firebox which is used to allow a more complete combustion process.
A coolant control valve is mounted on the combustion chamber coolant bypass duct of each engine. The engine controller regulates the amount of gaseous hydrogen allowed to bypass the nozzle coolant loop, thus controlling its temperature. The chamber coolant valve is 100% open before the engine start.
Uniform exit temperature profile. If there are hot spots in the exit flow, the turbine may be subjected to thermal stress or other types of damage. Similarly, the temperature profile within the combustor should avoid hot spots, as those can damage or destroy a combustor from the inside. Small physical size and weight.
A countercurrent heat exchanger with forced cooling air does the job. The cylinder-walls should not heat up the air before compression, but also not cool down the gas at the combustion. A compromise is a wall temperature of 90 °C. The viscosity of the oil is optimized for just this temperature.
The oil burner nozzle is usually mounted in the front of the firebox, protected by a hood of firebrick, and aimed at the firebrick wall below the firebox door. Dampers control air flow to the oil fire. Schematic of a later steam locomotive firebox boiler, with firebox to the left and indicatively showing two superheater elements to the right.
Ad
related to: combustion chamber wall temperature controller