Search results
Results From The WOW.Com Content Network
The radial distribution function is of fundamental importance since it can be used, using the Kirkwood–Buff solution theory, to link the microscopic details to macroscopic properties. Moreover, by the reversion of the Kirkwood–Buff theory, it is possible to attain the microscopic details of the radial distribution function from the ...
Approximate solutions for the pair distribution function in the extensional and compressional sectors of shear flow and hence the angular-averaged radial distribution function can be obtained, as shown in Ref., [6] which are in good parameter-free agreement with numerical data up to packing fractions .
The potential of mean force () is usually applied in the Boltzmann inversion method as a first guess for the effective pair interaction potential that ought to reproduce the correct radial distribution function in a mesoscopic simulation. [5]
This means solutions to the angular dimensions of the equation can be found independently of the radial dimension. This leaves an ordinary differential equation in terms only of the radius, r {\displaystyle r} , which determines the eigenstates for the particular potential, V ( r ) {\displaystyle V(r)} .
Once the fundamental solution is found, it is straightforward to find a solution of the original equation, through convolution of the fundamental solution and the desired right hand side. Fundamental solutions also play an important role in the numerical solution of partial differential equations by the boundary element method.
Radial basis function (RBF) interpolation is an advanced method in approximation theory for constructing high-order accurate interpolants of unstructured data, possibly in high-dimensional spaces. The interpolant takes the form of a weighted sum of radial basis functions .
For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:
A solution containing an aqua ion does not have the long-range order that would be present in a crystal containing the same ion, but there is short-range order. X-ray diffraction on solutions yields a radial distribution function from which the coordination number of the metal ion and metal-oxygen distance may be derived. With aqua ions of high ...