When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of performance analysis tools - Wikipedia

    en.wikipedia.org/wiki/List_of_performance...

    Java, ColdFusion, Apache, MongoDB Works with any Language supported by the JVM: Performs Application Performance Management and Performance and Root Cause Analysis. Combines APM and Low Level Developer Style Tooling; also includes a debugger and Java, memory, thread, and CPU profilers. Proprietary GlowCode by Electric Software, Inc. Windows

  3. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU).

  4. ROCm - Wikipedia

    en.wikipedia.org/wiki/ROCm

    ROCm is free, libre and open-source software (except the GPU firmware blobs [4]), and it is distributed under various licenses. ROCm initially stood for Radeon Open Compute platfor m ; however, due to Open Compute being a registered trademark, ROCm is no longer an acronym — it is simply AMD's open-source stack designed for GPU compute.

  5. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    In January 2019, the TensorFlow team released a developer preview of the mobile GPU inference engine with OpenGL ES 3.1 Compute Shaders on Android devices and Metal Compute Shaders on iOS devices. [30] In May 2019, Google announced that their TensorFlow Lite Micro (also known as TensorFlow Lite for Microcontrollers) and ARM's uTensor would be ...

  6. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA is designed to work with programming languages such as C, C++, Fortran and Python. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL , which require advanced skills in graphics programming. [ 7 ]

  7. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  8. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    It supports full-fledged interfaces for training in C++ and Python and with additional support for model inference in C# and Java. TensorFlow: Apache 2.0-licensed Theano-like library with support for CPU, GPU, Google's proprietary tensor processing unit (TPU), [160] and mobile devices.

  9. Deep Learning Super Sampling - Wikipedia

    en.wikipedia.org/wiki/Deep_learning_super_sampling

    Nvidia advertised DLSS as a key feature of the GeForce 20 series cards when they launched in September 2018. [4] At that time, the results were limited to a few video games, namely Battlefield V, [5] or Metro Exodus, because the algorithm had to be trained specifically on each game on which it was applied and the results were usually not as good as simple resolution upscaling.