Search results
Results From The WOW.Com Content Network
Maxima (/ ˈ m æ k s ɪ m ə /) is a powerful software package for performing computer algebra calculations in mathematics and the physical sciences. It is written in Common Lisp and runs on all POSIX platforms such as macOS , Unix , BSD , and Linux , as well as under Microsoft Windows and Android .
Written in C++, maintained by Bernard Parisse's et al. and available for Windows, Mac, Linux and many others platforms. It has a compatibility mode with Maple, Derive and MuPAD software and TI-89, TI-92 and Voyage 200 calculators.
In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers.
Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.
In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.
SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation" [3]) is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, group theory, differentiable manifolds, numerical analysis, number theory, calculus and statistics.
Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus.