Search results
Results From The WOW.Com Content Network
methane: methyl hydride; natural gas 2 1 1 C 2 H 6: ethane: dimethyl; ethyl hydride; methyl methane 3 1 1 C 3 H 8: propane: dimethyl methane; propyl hydride 4 2 2 C 4 H 10: n-butane: butyl hydride; methylethyl methane 5 3 3 C 5 H 12: n-pentane: amyl hydride; Skellysolve A 6 5 5 C 6 H 14: n-hexane: dipropyl; Gettysolve-B; hexyl hydride ...
Alkanes form a small portion of the atmospheres of the outer gas planets such as Jupiter (0.1% methane, 2 ppm ethane), Saturn (0.2% methane, 5 ppm ethane), Uranus (1.99% methane, 2.5 ppm ethane) and Neptune (1.5% methane, 1.5 ppm ethane). Titan (1.6% methane), a satellite of Saturn, was examined by the Huygens probe, which indicated that Titan ...
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. For broader coverage of this topic, see Boiling point . Boiling points, Master List format
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
This list is sorted by boiling point of gases in ascending order, but can be sorted on different values. "sub" and "triple" refer to the sublimation point and the triple point, which are given in the case of a substance that sublimes at 1 atm; "dec" refers to decomposition. "~" means approximately. Blue type items have an article available by ...
At normal pressure it liquifies below its boiling point at −42 °C and solidifies below its melting point at −187.7 °C. Propane crystallizes in the space group P2 1 /n. [25] [26] The low space-filling of 58.5% (at 90 K), due to the bad stacking properties of the molecule, is the reason for the particularly low melting point. Propane ...
It has a boiling point of −88.5 °C (−127.3 °F) and melting point of −182.8 °C (−297.0 °F). Solid ethane exists in several modifications. [ 12 ] On cooling under normal pressure, the first modification to appear is a plastic crystal , crystallizing in the cubic system.
Methane is easier to store than hydrogen due to its higher boiling point and density, as well as its lack of hydrogen embrittlement. [31] [32] The lower molecular weight of the exhaust also increases the fraction of the heat energy which is in the form of kinetic energy available for propulsion, increasing the specific impulse of the rocket.