When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]

  3. Integer-valued function - Wikipedia

    en.wikipedia.org/wiki/Integer-valued_function

    In mathematics, an integer-valued function is a function whose values are integers.In other words, it is a function that assigns an integer to each member of its domain.. The floor and ceiling functions are examples of integer-valued functions of a real variable, but on real numbers and, generally, on (non-disconnected) topological spaces integer-valued functions are not especially useful.

  4. Integer function - Wikipedia

    en.wikipedia.org/wiki/Integer_function

    Integer function may refer to: Integer-valued function, an integer function; Floor function, sometimes referred as the integer function, INT; Arithmetic function, a term for some functions of an integer variable

  5. Talk:Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Talk:Floor_and_ceiling...

    Rounding is to the nearest integer—not necessarily to the nearest greater integer or nearest least integer. For example, 1.4 rounded is 1, the floor of 1.4 is 1, the ceiling of 1.4 is 2. 1.6 rounded is 2, the floor of 1.6 is 1, the ceiling of 1.6 is 2.

  6. Hermite's identity - Wikipedia

    en.wikipedia.org/wiki/Hermite's_identity

    In mathematics, Hermite's identity, named after Charles Hermite, gives the value of a summation involving the floor function. It states that for every real number x and for every positive integer n the following identity holds: [1] [2]

  7. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.

  8. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    For any integer n, n ≡ 1 (mod 2) if and only if 3n + 14 (mod 6). Equivalently, ⁠ n − 1 / 3 ⁠ ≡ 1 (mod 2) if and only if n ≡ 4 (mod 6). Conjecturally, this inverse relation forms a tree except for the 1–2–4 loop (the inverse of the 4–2–1 loop of the unaltered function f defined in the Statement of the problem section of ...

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...